TÜREV
12. SINIF MATEMATİK TÜREV ALMA KONU ANLATIMI | Matematik Canavarı
 

12. SINIF MATEMATİK TÜREV ALMA KONU ANLATIMI

 
 

KONU ANLATIMI İNDİRMEK İÇİN TIKLAYIN.

TÜREV ALMA
1. Türevin Tanımı 1

a, b birer reel sayı olmak üzere,
fonksiyonu verilmiş olsun.

limiti bir reel sayı ise, bu limit değerine f fonksiyonunun xdaki türevi denir.
Ve f ‘(x0), Df(x0) ya da  ile gösterilir. Buna göre,
 
 
 
x – x0 = h alınırsa x ® x0 için h ® 0 olur. Bu durumda, tanım olarak,
 
 
eşitliği de yazılabilir.

 
2. Türevin Tanımı 2
 
 
fonksiyonu için,
limiti varsa bu limite f fonksiyonunun x = a daki sağdan türevi denir. Ve
biçiminde gösterilir. Benzer şekilde,
limiti varsa bu limite f fonksiyonunun x = a daki soldan türevi denir. Ve
biçiminde gösterilir.

f fonksiyonunun, x = a daki sağdan türevi soldan türevine eşit ise f nin x = a da türevi vardır (ve bulunan bu limit değerleri, o noktadaki türeve eşittir). Aksi takdirde türevi yoktur.

Sonuç

 
1. f ‘(a+) = f’(a) ise f fonksiyonunun x = a da türevi vardır.
2. f fonksiyonunun x = a da türevi varsa f fonksiyonu x = a da süreklidir.
3. f fonksiyonu, x = a da sürekli olduğu hâlde, o noktada türeve sahip olmayabilir.
4. f fonksiyonu x = a da sürekli değilse türevli de değildir.
 
 
Uyarı

Bir fonksiyonun, bir noktada türevinin olması için gerek koşul, o noktada sürekliliktir. Ancak bu, o noktada türevin olması için yeterli değildir.
 
TÜREV ALMA KURALLARI
 
1. xn nin Türevi
 
 

2. c Sabit Sayısının Türevi
 
 
3. c × f(x) in Türevi
 
 
4. Toplamın Türevi
 
 
5. Farkın Türevi
 
 
6. Çarpımın Türevi
 
 
7. Bölümün Türevi
 
 
Sonuç
 
8. Mutlak Değer Fonksiyonunun Türevi
 
 verilsin.  olmak üzere,

f(a) = 0 ise fonksiyonun bu noktada türevi olabilir ya da olmayabilir. Bunu araştırmak için fonksiyonun sağdan ve soldan türevlerine bakılır. Sağdan ve soldan türevler eşit ise fonksiyon bu noktada türevlidir. Aksi hâlde türevli değildir.
Sonuç
Mutlak değer fonksiyonu tek katlı köklerde köşe (uç) oluşturur. Köşe (uç) noktalarda türev yoktur.
Çift katlı köklerde köşe (uç) oluşmaz. Bunun için, çift katlı köklerde türev vardır ve sıfırdır.

9. İşaret Fonksiyonunun Türevi
 
 

10. Tam Değer Fonksiyonunun Türevi
 
 
11. Bileşke Fonksiyonun Türevi
 
 
Uyarı

f ‘(2) gösterimi [f(2)]‘ gösterimi ile karıştırılmamalıdır.
f ‘(2) ¹ [f(2)]‘ dir.
Çünkü f ‘(2) gösterimi, fonksiyonun türevinin, yani f ‘(x)  in x = 2 için değeridir.
[f(2)]‘ gösterimi, fonksiyonun x = 2 için değerinin (Yani, bir reel sayının) türevidir. [f(2)]‘ = 0 dır.
 

Kural
 
 
12. Köklü Fonksiyonun Türevi
 
 
Kural
13. Logaritmik Fonksiyonun Türevi
 
 
Kural
 
 
14. Üstel Fonksiyonun Türevi
 
 
Kural
 
 
15. Parametrik Olarak Verilen Fonksiyonların Türevi
 
 fonksiyonu y=f(x)  şeklinde belirtilebileceği gibi, g ve h iki fonksiyon olmak üzere
y = g(t)
x = h(t)
denklemleri ile de belirtilebilir. Burada t ye parametre denir.
Bazen y = g(t) ve x = h(t) denklemlerinden t yok edilerek y = f(x) şeklinde bir denklem elde edilebilir. Ancak bu her zaman mümkün olmayabilir.
Bu durumda,
y = g(t), x = h(t) parametrik denklemleriyle verilen
y = f(x) fonksiyonunun türevi aşağıda verilen kural yardımıyla bulunur.
 
 
16. Kapalı Fonksiyonların Türevi

F(x, y) = 0 şeklindeki fonksiyonlara kapalı fonksiyon denir.
x in değişken, x in dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fx ile ve y nin değişken, y nin dışında kalanların sabit gibi düşünülmesiyle alınan türevi Fy ile gösterelim.
 
Buna göre, kapalı fonksiyonun türevini şu kural yardımıyla buluruz:
 
 
17. Trigonometrik Fonksiyonların Türevi
 
 
18. Ardışık Türevler

y = f(x) in türevi 

olmak üzere,

f’(x) in türevi olan 
ifadesine
y = f(x) in ikinci mertebeden türevi denir.
Benzer şekilde, 
 
ifadesine de y = f(x) in n. mertebeden türevi denir.

 
Kural
 
 
19. Ters Fonksiyonların Türevi
 
f: A ® B, birebir ve örten bir fonksiyon ise f(x) in tersi olan f–1(x) fonksiyonu bulunur. Sonra türev alınır. Bunun zor olduğu durumlarda ters fonksiyonun türevi şöyle alınır.
 
Kural
 
Ters trigonometrik fonksiyonların türevinin bulunmasında şu formüller kullanılabilir.
 
 
Bugün 1 ziyaretçi (1 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol